1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
| """ Neural Style Transfer using Perceptual Loss paper: Perceptual Losses for Real-Time Style Transfer and Super-Resolution see: https://link.springer.com/chapter/10.1007/978-3-319-46475-6_43 """
import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, BatchNormalization, Activation, Add from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications import vgg16 import tensorflow.keras.backend as K import numpy as np import cv2 import glob import random
def resblock(inputs, filters): x = Conv2D(filters, kernel_size=3, strides=1, padding='same')(inputs) x = BatchNormalization()(x) x = Activation('relu')(x)
x = Conv2D(filters, kernel_size=3, strides=1, padding='same')(x) x = BatchNormalization()(x)
x = Add()([inputs, x]) outputs = Activation('relu')(x) return outputs
def buildTransformationNet(): inputs = Input(shape=(None, None, 3))
x = Conv2D(128, kernel_size=9, strides=2, padding='same')(inputs) x = BatchNormalization()(x) x = Activation('relu')(x)
x = Conv2D(256, kernel_size=3, strides=2, padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x)
for _ in range(3): x = resblock(x, 256)
x = Conv2DTranspose(128, kernel_size=3, strides=2, padding='same', activation='relu')(x) x = BatchNormalization()(x) x = Activation('relu')(x)
x = Conv2DTranspose(64, kernel_size=3, strides=2, padding='same', activation='relu')(x) x = BatchNormalization()(x) x = Activation('relu')(x)
outputs = Conv2D(3, kernel_size=9, strides=1, padding='same', activation='tanh')(x) return Model(inputs, outputs)
def buildLossNet(): vgg = vgg16.VGG16(include_top=False, weights='imagenet') outputs_dict = dict([(layer.name, layer.output) for layer in vgg.layers]) return Model(vgg.inputs, outputs_dict)
def gram_matrix(x): shape = K.cast(K.shape(x), 'float32') x = K.permute_dimensions(x, (0, 3, 1, 2)) x = K.reshape(x, (K.shape(x)[0], K.shape(x)[1], -1)) gram = tf.matmul(x, K.permute_dimensions(x, (0, 2, 1))) / K.prod(shape[1:]) return gram
def style_loss(style, combination, reduction='mean'): gram_style = gram_matrix(style) gram_combination = gram_matrix(combination)
square = K.sum(K.square(gram_style - gram_combination), axis=[1, 2]) if reduction == 'mean': return K.mean(square) else: return K.sum(square)
def content_loss(content, combination, reduction='mean'): square = K.sum(K.square(content - combination), axis=[1, 2, 3]) if reduction == 'mean': return K.mean(square) else: return K.sum(square)
def tv_loss(img, reduction='mean'): t = tf.image.total_variation(img) if reduction == 'mean': return K.mean(t) else: return K.sum(t)
def perceptualLoss(img_content, img_style, img_combination, loss_net): content_weight = 2e-6 style_weight = 3e-2 tv_weight = 1e-5
content_layer_name = 'block4_conv3' style_layer_names = [ "block1_conv2", "block2_conv2", "block3_conv2", "block4_conv2", "block5_conv2" ]
loss = K.variable(0.)
feat_content = loss_net(img_content) feat_style = loss_net(img_style) feat_combin = loss_net(img_combination)
loss = loss + content_weight * content_loss( feat_content[content_layer_name], feat_combin[content_layer_name])
for layer_name in style_layer_names: sloss = style_loss(feat_style[layer_name], feat_combin[layer_name]) loss = loss + style_weight / len(style_layer_names) * sloss
loss += tv_weight * tv_loss(img_combination) return loss
class DataLoader: def __init__(self, dir_content_img, fpath_style_img, batch_size, img_shape): self.batch_size = batch_size self.img_shape = img_shape self.idx_cur = 0
self.flist = glob.glob(dir_content_img + '/*.jpg') self.fnum = len(self.flist)
self.img_style = self.processImage(fpath_style_img)
def processImage(self, fpath): img = cv2.imread(fpath, 1) img = cv2.resize(img, (self.img_shape[1], self.img_shape[0])) img = img.astype(np.float32) / 127.5 - 1 return img
def getNumberOfBatch(self): return (self.fnum // self.batch_size) + (self.fnum % self.batch_size != 0)
def reset(self): self.idx_cur = 0 random.shuffle(self.flist)
def __iter__(self): return self
def __next__(self): if self.idx_cur >= self.fnum: self.reset() raise StopIteration
if self.idx_cur + self.batch_size - 1 < self.fnum: length = self.batch_size else: length = self.fnum - self.idx_cur
img_style = np.tile(self.img_style, (length, 1, 1, 1))
img_content = np.zeros((length, *self.img_shape)) for k in range(length): img_content[k] = self.processImage(self.flist[self.idx_cur+k])
self.idx_cur += length
return img_content, img_style
def train(transformation_net, loss_net, epochs, batch_size=8): optimizer = Adam() dataLoader = DataLoader( dir_content_img=r'../input/image-colorization/unlabeled2017_subsample', fpath_style_img=r'../input/styletransfer/style.jpg', batch_size=batch_size, img_shape=(256, 256, 3) )
num_batch = dataLoader.getNumberOfBatch() for epoch in range(1, epochs + 1): for step, (img_content, img_style) in enumerate(dataLoader): with tf.GradientTape() as tape: img_combination = transformation_net(img_content) loss = perceptualLoss(img_content, img_style, img_combination, loss_net)
grads = tape.gradient(loss, transformation_net.trainable_weights) optimizer.apply_gradients(zip(grads, transformation_net.trainable_weights))
print("epoch {}/{}, step {}/{}: loss={:.4f}".format( epoch, epochs, step+1, num_batch, loss))
if (step+1) % 400 == 0: img = img_combination.numpy()[0] img = (img + 1) * 127.5 cv2.imwrite('./epoch{}step{}.png'.format(epoch, step+1), img.astype(np.uint8))
transformation_net = buildTransformationNet() loss_net = buildLossNet() train(transformation_net, loss_net, epochs=10)
|